8,132 research outputs found

    Low-lying states in near-magic odd-odd nuclei and the effective interaction

    Full text link
    The iterative quasi-particle-random-phase approximation (QRPA) method we previously developed to accurately calculate properties of individual nuclear states is extended so that it can be applied for nuclei with odd numbers of neutrons and protons. The approach is based on the proton-neutron-QRPA (pnQRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method is used to calculate excitation energies of proton-neutron multiplets for several nuclei. The influence of a pairing interaction in the T=0T=0 channel is studied

    Calculating the nuclear mass at finite angular momenta

    Full text link
    Mean field methods to calculate the nuclear mass are extended into the high spin regime to calculate the nuclear binding energy as a function of proton number, neutron number and angular momentum. Comparing the trend as a function of mass number for a selection of high-spin states, a similar agreement between theory and experiment is obtained as for ground state masses.Comment: 4 pages, 3 figure

    Effective pseudopotential for energy density functionals with higher order derivatives

    Full text link
    We derive a zero-range pseudopotential that includes all possible terms up to sixth order in derivatives. Within the Hartree-Fock approximation, it gives the average energy that corresponds to a quasi-local nuclear Energy Density Functional (EDF) built of derivatives of the one-body density matrix up to sixth order. The direct reference of the EDF to the pseudopotential acts as a constraint that divides the number of independent coupling constants of the EDF by two. This allows, e.g., for expressing the isovector part of the functional in terms of the isoscalar part, or vice versa. We also derive the analogous set of constraints for the coupling constants of the EDF that is restricted by spherical, space-inversion, and time-reversal symmetries.Comment: 18 LaTeX pages, 2 EPS Figures, 27 Tables, and 18 files of the supplemental material (LaTeX, Mathematica, and Fortran), introduction rewritten, table XXVII and figure 2 corrected, in press in Physical Review

    Fluctuating parts of nuclear ground state correlation energies

    Full text link
    Background: Heavy atomic nuclei are often described using the Hartree-Fock-Bogoliubov (HFB) method. In principle, this approach takes into account Pauli effects and pairing correlations while other correlation effects are mimicked through the use of effective density-dependent interactions. Purpose: Investigate the influence of higher order correlation effects on nuclear binding energies using Skyrme's effective interaction. Methods: A cut-off in relative momenta is introduced in order to remove ultraviolet divergences caused by the zero-range character of the interaction. Corrections to binding energies are then calculated using the quasiparticle-random-phase approximation (QRPA) and second order many-body perturbation theory (MBPT2). Result: Contributions to the correlation energies are evaluated for several isotopic chains and an attempt is made to disentangle which parts give rise to fluctuations that may be difficult to incorporate on the HFB level. The dependence of the results on the cut-off is also investigated. Conclusions: The improved interaction allows explicit summations of perturbation series which is useful for the description of some nuclear observables. However, refits of the interaction parameters are needed to obtain more quantitative results

    Convergence of density-matrix expansions for nuclear interactions

    Full text link
    We extend density-matrix expansions in nuclei to higher orders in derivatives of densities and test their convergence properties. The expansions allow for converting the interaction energies characteristic to finite- and short-range nuclear effective forces into quasi-local density functionals. We also propose a new type of expansion that has excellent convergence properties when benchmarked against the binding energies obtained for the Gogny interaction.Comment: 4 pages, 3 figure

    Observational manifestations of solar magneto-convection -- center-to-limb variation

    Full text link
    We present the first center-to-limb G-band images synthesized from high resolution simulations of solar magneto-convection. Towards the limb the simulations show "hilly" granulation with dark bands on the far side, bright granulation walls and striated faculae, similar to observations. At disk center G-band bright points are flanked by dark lanes. The increased brightness in magnetic elements is due to their lower density compared with the surrounding intergranular medium. One thus sees deeper layers where the temperature is higher. At a given geometric height, the magnetic elements are cooler than the surrounding medium. In the G-band, the contrast is further increased by the destruction of CH in the low density magnetic elements. The optical depth unity surface is very corrugated. Bright granules have their continuum optical depth unity 80 km above the mean surface, the magnetic elements 200-300 km below. The horizontal temperature gradient is especially large next to flux concentrations. When viewed at an angle, the deep magnetic elements optical surface is hidden by the granules and the bright points are no longer visible, except where the "magnetic valleys" are aligned with the line of sight. Towards the limb, the low density in the strong magnetic elements causes unit line-of-sight optical depth to occur deeper in the granule walls behind than for rays not going through magnetic elements and variations in the field strength produce a striated appearance in the bright granule walls.Comment: To appear in ApJL. 6 pages 4 figure

    Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves

    Full text link
    We provide a systematic test of empirical theories of covalent bonding in solids using an exact procedure to invert ab initio cohesive energy curves. By considering multiple structures of the same material, it is possible for the first time to test competing angular functions, expose inconsistencies in the basic assumption of a cluster expansion, and extract general features of covalent bonding. We test our methods on silicon, and provide the direct evidence that the Tersoff-type bond order formalism correctly describes coordination dependence. For bond-bending forces, we obtain skewed angular functions that favor small angles, unlike existing models. As a proof-of-principle demonstration, we derive a Si interatomic potential which exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording (but no content) changed since original submission on 24 April 199
    • …
    corecore